Improved Medium- and Long-Term Runoff Forecasting Using a Multimodel Approach in the Yellow River Headwaters Region Based on Large-Scale and Local-Scale Climate Information

نویسندگان

  • Haibo Chu
  • Jiahua Wei
  • Jiaye Li
  • Zhen Qiao
چکیده

Mediumand long-term runoff forecasting is essential for hydropower generation and water resources coordinated regulation in the Yellow River headwaters region. Climate change has a great impact on runoff within basins, and incorporating different climate information into runoff forecasting can assist in creating longer lead-times in planning periods. In this paper, a multimodel approach was developed to further improve the accuracy and reliability of runoff forecasting fully considering of large-scale and local-scale climatic factors. First, with four large-scale atmospheric oscillations, sea surface temperature, precipitation, and temperature as the predictors, multiple linear regression (MLR), radial basis function neural network (RBFNN), and support vector regression (SVR) models were built. Next, a Bayesian model averaging (BMA)-based multimodel was developed using weighted MLR, RBFNN, and SVR models, and the performance of the BMA-based multimodel was compared to those of the MLR, RBFNN, and SVR models. Finally, the high-runoff performance of these four models was further analyzed to prove the effectiveness of each model. The BMA-based multimodel performed better than those of the other models, as well as high-runoff forecasting. The results also revealed that the performance of the forecasting models with multiple climatic factors were generally superior to that without climatic factors. The BMA-based multimodel with climatic factors not only provides a promising, reliable method for mediumand long-term runoff forecasting, but also facilitates uncertainty estimation under different confidence intervals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting of rainfall using different input selection methods on climate signals for neural network inputs

Long-term prediction of precipitation in planning and managing water resources, especially in arid and semi-arid countries such as Iran, has a great importance. In this paper, a method for predicting long-term precipitation using weather signals and artificial neural networks is presented. For this purpose, climatic data (large-scale signals) and meteorological data (local precipitation and tem...

متن کامل

Simulation of the climate change impact on monthly runoff of Dez watershed using IHACRES model

Identification and analysis of flow fluctuations in consequences of climate change is one of the most important factors in water resources management planning and this is vital especially in areas where large crowds are engaged in agriculture. Dez watershed, as an agricultural hub in the country, is one of areas that river flow fluctuations caused by climate change can affect a large population...

متن کامل

Using the IHACRES model to investigate the impacts of changing climate on streamflow in a semi-arid basin in north-central Iran

Understanding the variations of streamflow of rivers is an important prerequisite for designing hydraulic structures as well as managing surface water resources in basins. An overview of the impact of climate change on the streamflow in the Hablehroud River, the main river of a semi-arid basin in north-central Iran, is provided. Using the LARS-WG statistical downscaling model, the outputs of Ha...

متن کامل

مدل‌سازی بارش- رواناب در شرایط تغییر اقلیم به‌منظو ر پیش‌بینی جریانات آتی حوزه صوفی‌چای

Two major issues through studies on hydrological impact assessment of climate change are the sufficiency of historical data and selection of the best rainfall-runoff model. Climate models, with the ability to simulate climatic variables, are considered as references for future projections. Therefore, the rainfall-runoff model must be able to simulate streamflow using only these variables. Curre...

متن کامل

واسنجی و ارزیابی ﻋﻤﻠﮑﺮد مدل‌‌های ﻫﯿﺪروﻟﻮژی IHACRES و SWAT‬در شبیه‌سازی روان‌آب

The runoff simulation have  particular importance in Civil works, river training, design and planning of ground water resources, flood control and prevention of environmental hazards and reduction of erosion and sedimentation in the watershed. The runoff in each region varies according to climatic conditions, hydrological, soil and vegetation in the basin. Simulate these processes need to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017